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Abstract 

Economists have widely applied the correlation integral of Grassberger and Procaccia (1983) to 

determine the dimension of a nonlinear dynamical system. A key judgmental input into this 

procedure is the choice of delay time for reconstructing a possible attractor. The literature, however, 
lacks a rigorous procedure for choosing the delay time. In this paper, I apply a simple 
nonparametric test for independence developed in Mizrach (1995a) to determine the appropriate lag 
for reconstruction and dimension estimation. In an application to the Lorenz equations, I obtain the 
best estimates of the correlation dimension at the lag chosen by the test. I then use the method to 
uncover nonlinear structure in the FF/DM exchange rate. 

JEL classification: C22; F3 1 

Keywords: Phase space reconstruction; Delay times; Nonlinear dynamics; Exchange rates 

1. Introduction 

Dimension is a measure of the complexity of a dynamical system. Economists are 
interested in estimating dimension because it can reveal whether a parsimonious 
representation of an economic variable is likely to be found. Following the lead of the 
physical sciences, nonlinear analysts have focused on what is known as the correlation 
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dimension prposed by Grassberger and Procaccia (1983). GP used a construct known as 
the correlation integral to estimate the dimension of the attracting sets for dynamical 
systems. The GP methodology has proved quite reliable and has become the workhorse of 
the empirical literature. The GP algorithm is efficient and produces reliable estimates 

with relatively small sample sizes. 
Nonetheless, it is possible to produce poor estimates of the correlation dimension. 

Brock (1989) first noted that near unit root processes may produce spuriously 
low correlation dimension estimates. Theiler (1986) and Ramsey et al. (1990) also 

point out that data limitations may lead to unreliable inference. Even when data are 
not limited, as in experimental situations or with a known dynamical system, a 
poor choice of inputs to the GP algorithm can produce seriously biased estimates of 
dimension. 

A critical input to the GP approach is the choice of delay time. The literature, to this 

point, lacks a reliable method to choose the lags needed for the Takens (1980) 
reconstruction. This paper, using a new test for independence proposed in Mizrach 

(1995a), provides a simple procedure for determining the delay time. 
Applications of the Grassberger-Procaccia methodology in economics and finance 

are numerous. Brock and Sayers (1988) have analyzed GNP data. Frank and Stengos 

(1989) examine precious metals prices. Scheinkman and LeBaron (1989) and 
Hiemstra (1992) estimate the correlation dimension of aggregate stock returns. 
Mayfield and Mizrach (1992) look at real time stock price data. Hsieh (1989), 

Guillaume (1994) investigate foreign exchange rates as I do below. These papers 
have produced estimates of correlation dimension ranging from 3-7 on standard 
data series. With the exception of the papers by Mayfield and Mizrach and 
Guillaume, these other estimates used filtered data rather than delays in reconstructing 
the dynamics. 

I estimate the correlation dimension using a method proposed by Denker and Keller 
(1986) and Hiemstra (1992). This procedure generates points estimates of the correlation 
dimension and standard errors under a null of weak dependence. I calibrate the algorithm 
to a system of known dimension, the Lorenz system. I show that a naive choice of 
delay time generally biases dimension estimates downward. Using a rule of thumb 
commonly employed in the literature also produces biased estimates. The delay time 
chosen by the nonparametric test produces the most accurate estimate for the correlation 
dimension. 

Having demonstrated the procedure on the Lorenz system, I then analyze a high 
frequency financial data set, the French France-German Deutschemark (FF/DM) 
exchange rate. I calculate the correlation dimension using the time-delayed, unfiltered 
data. I find nonlinear structure clearly distinguishable from white noise with dimension 
under 3. 

The paper is organized as follows. In Section 2, I sketch Takens’ approach to 
reconstructing a dynamical system. The importance of delay time to the reconstruction is 
discussed in Section 3, where I also briefly review alternative approaches to selecting the 
delay time. In Section 4, I develop the test for determining delay time, and I calibrate the 
procedure using the Lorenz system in Section 5. Section 6 contains the exchange rate 
analysis. I offer a summary and conclusions in Section 7. 
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2. Phase space reconstruction 

Consider a compact n-dimensional manifold SER”. A dynamical system is a 
diffeomorphism, T : S -+ S. Time evolution follows an initial position s&S, 

s1 = T(so),s2 = T(q) = T(T(so)) = T2(so). (1) 

Assume that one observes a scalar x, through a measurement function, h : S-+R. Define 
the m-dimensional vector 

4” = (Q)), W(s,)), . . , W”-’ (sr))) (2) 

to illustrate the map, (a(s) : S-+R”. Takens then demonstrated that if (T,h) are both 
smooth, an equivalence relation existed between the original dynamical system and the 

map Q(s) so long as m22n+l. This can be stated formally as: 

Proposition (Takens’ Embedding Theorem for D#eomorphisms). Let S be a compact 

manifold of dimension n, T : S -+ S be a C? diffeomorphism, and h : S -+ R be a smooth 

function. There exists an open dense set of pairs (T,h) for which the map Q(s) : S -+ R”’ is 

an embedding for m 2 2n + 1. 
The embedding diffeomorphically maps the original dynamical system on S to a sub- 

manifold of Rm>“‘+’ . The dynamics are C2 equivalent to those on Q(s). In particular, both 
dimension and entropy are preserved by the smooth, invertible change of coordinates 
involved in the phase space reconstruction of T. 

3. The method of time delays 

In their pioneering work on dynamical systems, Packard et al. (1980) realized that not 
all embeddings are equivalent, given a finite data sample. Consider again the m- 

dimensional vector (2), where we now delay by r between each component, 

$ = (&,%+T,. . . ,X,+(,-1),) (3) 

Packard et al. conjectured that accurate dimension estimates of strange attractors would 
depend upon choosing r in such a way as to form sharp conditional probability 
distributions, 

WX,+(m-l), I Xr,XI+T,. . ,Xr+(m-2)rl. (4) 

Since the time series are nonlinear and often non-Gaussian, methods that look beyond 
linear dependence are needed to choose a delay time. I develop some of these 
preliminaries in Section 3.1, and present Fraser and Swinney’s (1986) mutual information 
function in Section 3.2. 

3.1. Correlation and independence 

To proceed with a rigorous presentation of Fraser and Swinney’s results, I must make 
some assumptions about the observables. Let {xt}rZ, be realizations of a strictly 
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stationary and ergodic process, with joint probability density 

f(q) = Pr.[xr = XI,X~+~ =X2,. . ,xt++~jT =&I. 

Consider the marginal density of the first component of the m-vector, 

f&J = / . &)dx,,T .&,(,-I),. 
X 

If r chosen so as to make each element independent, the joint density would factor into 
the m-marginals, 

f(g) =f(x,If(x,+,) ” Ybt+(m-l)r 1 (7) 

In Section 4, I devise a test based upon this factorization. 
If the x’s were Gaussian random variables, independence could be determined by the 

correlation between xI and x,+~, 

$7) = E/(x1 - PU)(Xt+, - CL)], (8) 

where p is the unconditional population mean. Linear independence, however, is not 
sufficient to guarantee independence for non-Gaussian processes. That is, y(r)=0 does 
not imply that I can factor the join density as in Eq. (7). Nonetheless, the zero-crossing of 
the autocorrelation function is a rule of thumb used for the delay time in the literature.’ 

3.2. Mutual information 

The existing literature on choice of delay times is grounded in information theory and 
tends to focus on entropy. Define the entropy of the message x, as 

WG) - - s f(x~)loglf(x,)]~,, 
X 

and the conditional entropy of x~+~ given x,, 

I can express the conditional entropy in a way that will be intuitively useful below, 

This states that the conditional entropy is just the difference between the entropy of the 
joint density f (x r+r, xt) and the entropy of the first marginal density. Note that the entropy 
tells us the average uncertainty in the message to be received, and the conditional entropy 
tells us the same, given a previous message. If the xt and x~+~ are independent, x, is not at 
all informative about the next message. Knowing x, resolves none of the uncertainty, and 
it follows that H(x,+, 1 xt) = H(x,+,). 

*See e.g. H&fuss and Mayer-Kress (1986). 



B. Mizrach/J. of Economic Behavior & Org. 30 (1996) 369-381 373 

Define, as in Fraser and Swinney (1986) the mutual information, 

MI = H&+7) - H(%+, I &I. (12) 

Note that if the pairs are independent, the function reaches it minimum at zero. A natural 
extension to this work was Fraser’s (1989b) concept of marginal redundancy, 

Wx,,,,) = .I (log&,+rn, I xt, . ,xr+(m-qTl - wf(xr+mr)lPf~t+mT (13) 
X 

Note again that if T is large enough, the components of the m-vectors are independent, 

and the marginal redundancy will be minimized. 
The algorithm proposed by Fraser and Swinney for mutual information, and 

generalized to higher dimensions by Fraser (1989a, 1989b) is quite cumbersone, by the 
authors’ admission. For ~02, literally millions of points are required to construct a good 
estimate of the conditional densities. An alternative approach, based on work by Mizrach 

(1995a), is to use the distribution functions. 

4. A simple nonparametric test 

Consider now the distribution function of the m-vectors 

F(T) = Pr.[x, < XI, . . . ,Xt+(m-l)i < xn]. (14) 

I will define a stochastic process to be locally independent of order p if the realization x, 
provides no information about the process p periods ahead. Formally, this implies the 
equality of the conditional and unconditional distributions. Let (pi,. . .,p,,-1) be a set of 
increasing integers on [l,L], L<n-m+l. Local independence then implies 

Pr.[xr+pm_, < E, . . , x~+~, < E,X~ < E] = (Pr.[x, < ~1)“. (15) 

To estimate the joint, F(c), and marginal, F(x,), distributions in Eq. (15), introduce 
the indicator function, I : R-+R, 

z[x, < E] = 
l,ifx, <E 

0, otherwise 
5 I(xr, E). (16) 

The joint unconditional probability that m leads of the x’s are less than E is given by 

J 
m-l 

oh E) = x B Z(X~+~, I EW’(xt) j (17) 

where for notational convenience I set po=O. A consistent estimator of Eq. (17) is the 
statistic3 

N m-l 

%t, N, &I = c n G+, , &l/N, 
1=1 i=o 

(18) 

where N=n-max [pi] 

‘Statistics like Eq. (18) and the correlation integral of Grassberger and Procaccia (1983) are known as U- 
statistics. For an introduction, see Seffling (1980). 
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My testing procedure falls into the very general class proposed by Blum et al. (BKR, 
1961) for sample distribution functions. The adjustable parameter p corresponds to the 
delay time, highlighting the alternative of interest. 

While the distribution theory of the tests in the BKR class is often quite complicated, a 
simple nonparametric test for local independence (SNT) can then be constructed using 
consistent estimators of the first two moments of this statistic. In Mizrach (1995a), I 
prove the following: 

Proposition. Let (x,) be locally independentfor any p& [ 1 ,L], i= 1,. .,m- 1, L<N, then 

if B(rn,&)>O, 

v% [%, N, ~1 - ‘4m - 1, N, ~)e(l, N, &)I 
(19) 

I use Eq. (19) to construct a test for local optimality of the delay time. As Packard et al. 
noted, a good reconstruction requires data that are approximately independent. Using the 
simple test, I can search for the p such that the statistic is closest to be being normally 
distributed. I turn to this method in the Section 5 in an application to the Lorenz 
equations. 

5. Application to the Lorenz attractor 

5.1. Phase portraits 

The Lorenz equations are a three-dimensional dynamical system first conceived as a 
model for the climate. The system is given by 

dx/dt = lO(y -x), 

dy/dt = 28x - y - xz, 

dz/dt = xz - (8/3)t. 

(20) 

I simulated 20,000 points for all three coordinates, discarding 10,000 transients, using a 
fourth order Runge-Kutta routine with a stepzise of 0.003. My objective will be 
reconstruct the system using a delay time representation involving only one coordinate. I 
will also try to estimate the dimension of the attracting set. 

I first calculate the autocorrelation function for the y coordinate for lags ranging for 
1 to 250. The first zero crossing of the function occurs at lag 247 at the very edge 
of Fig. 1. I then used the SNT of Section 4 and found a local minima at lag 154. 
The standardized statistics for m=2 with p varying from 1 to 250 are also plotted in 
Fig. 1. 

In Fig. 2, I plot an X-Z phase plane projection of 2,500 points. I then constructed 
phase portraits using time delays of 1,75,155, and 250. This animated sequence appears 
in Figs. 3-6. One can see in the figures the gradual fleshing out of the dynamics as the 
delay time grows. At lag 1, the coordinates are so highly correlated that they lie nearly 
along a line. Structure does not really emerge until 7 = 75. 
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Fig. 1. Correlation dimension estimates for the Lorenz attractor. 

-20 -15 -10 -5 0 5 10 7.0 

M) 

Fig. 2. X-Z phase space of Lorenz equations. 

5.2. Dimension estimates 

The correlation dimension is an estimate of the fractal dimension of a chaotic 
dynamical systems attracting set. The most commonly employed algorithm used to 
estimate the dimension is the correlation integral of Grassberger and Procaccia (1983). 
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Fig. 3. Phase space reconstruction of Lorenz attractor delay time T = 1. 

Fig. 4. Phase space reconstruction of Lorenz attractor delay time t = 75 

Define the statistic 

C(m.N:&)~i:I[,,~-x;",,<~]. 

ij 
(21) 

where I is the indicator (or Heaviside) function of Eq. (16) and 11.11 is the e, norm. the 
correlation integral is just the limit of Eq. (21), 

C(m,&) E klC(m,N,&). 
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Fig. 5. Phase space reconstruction of Lorenz attractor delay time T = 155. 

Fig. 6. Phase space reconstruction of Lorenz attractor delay time T = 250. 

The integral is not of direct interest, but I make use of the scaling relation, 

where v is the correlation dimension. GP have shown that v is a lower bound for the 
fractal dimension. In practice, most analysts construct a plot of the statistics Eq. (21) for a 
range of E’S, and estimate v with the logarithmic change, d log [C(m,N,&)]ld log [E]. 
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Table 1 
GLS dimension estimates a 

Delay Dimension Estimate 

Lorenz attractor 

1 

75 

155 

250 

0.711 (0.021) 

1.538 (0.028) 

2.108 (0.035) 

1.675 (0.005) 

FF/DM Exchange rate 

1 0.707 (0.007) 

30 2.042 (0.067) 

60 2.461(0.027) 

90 2.189 (0.006) 

120 2.330 (0.006) 

150 2.278 (0.012) 

a For the Lorenz estimates, I simulate 2,500 observations. There are 1,437 exchange rate data points. For both 
estimates, I use 25 autcovariances over a range of 15 E’S from 0.5 to 1.5 standard deviations. For the Lorenz data, 
the embedding dimension m=3, and for the exchange rate data, m=4. 

Brock and Baek (199 1) show that this log change is a U-statistic and compute its standard 

error under the assumption of i.i.d. 
I follow an alternative procedure proposed by Hiemstra (1992) that accounts for weak 

dependence in the data. Hiemstra constructs a j-vector of the statistics Eq. (21), 
y(m,N,&)=(C(m,N,&,),...,C(~,~,&j)), and regresses them on the log E’S. His GLS estimates 
of v handle the weak dependence with Parzen weights on k lagged autocovariances. In the 
examples, I set j= 15, ranging from 0.5 to 1.5 sample standard deviations for E, and I set 

k=2T4 
I wanted to see whether the choice of delay time would influence the dimension 

calculations. I report estimates in Table 1 at the four delay times in the phase portraits and 
plot them in Fig. 1. A smoothed curve is fit to show the dependence of the dimension 
estimate on time delay. 

The estimates clearly show that the short delays lead to a biasing downward of the 
dimension estimates. The points nearly lie along a line at r= 1, and I estimate a dimension 
of 0.7 11. This is statistically different from the other estimates. This estimated correlation 
dimension rises smoothly until just after lag 150. At T= 155, the local minima of the SNT, 
I estimate ~=2.108, within two standard deviations of GP’s estimate of 2.04 (GP 1983, 
p.347, Table 2). 

The other interesting thing to note is that it is also possible to wait too long. Some 
structure starts to disappear in Fig. 6 as the attractor starts to fold up again for large 7. At 
lag 250, near the zero crossing of the autocorrelation function, the dimension estimate 
falls back to 1.675. 

4Monte Carlo estimates in Hiemstra (1992) show this to be a useful range. Autocovariances beyond 2.5 made 

little or no difference to the estimates. 
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6. Application to the FF/DM exchange rate 

A number of studies, previously cited in the introduction, have applied the method of 

Grassberger and Procasccia to estimate the complexity of economic and financial data. 
All these papers use filtered data, generally using log differences. Many also try to filter 
out the effects of linear dependence with ARMA models and even nonlinear dependence 
with GARCH models. With the exception of Mayfield and Mizrach (1992) and 

Guillaume (1994), none of these papers uses a delay time reconstruction. 
The motivation for filtering in the economics literature is that the data are generally 

nonstationary. Differencing (or some other more sophisticated filter like Hodrick- 
Prescott) is used to render tbe data stationary, but as is known from a decade of unit root 
econometrics, many results are quite sensitive to the choice of filter. This is particularly 
true when it comes to dimension calculations. Chen (1993) and Ramsey et al. (1990) have 
arrived at very different conclusions about the correlation dimension of several monetary 

aggregates using different filtering techniques. It would be nice to analyze a time series of 
asset prices where the levels appear stationary without filtering. 

Fortunately for our purposes, the majority of intra-European exchange rates have 
fluctuated in &2.25% bands for more than 15 years in what is called the Exchange Rate 
Mechanism (ERM).’ While these bands have been realigned several times, I focus on the 
period from January 12, 1987 to September 14, 1992 when there were no realignments in 
the ERM. This constitutes a sample of 1,437 daily observations in which the FF/DM 

exchange rate fluctuated between 3.3206 and 3.4197 FF per DM, around a central parity 
of 3.3539 FF/DM. 

I approach these data in the same fashion as I did the Lorenz system. I analyze the 
autocorrelation function and graph it in Fig. 7. The zero crossing does not occur until lag 
17 1. There is almost a year’s worth of linear dependence in the levels of the data. This is a 
structure that I do not want to throw away. 

The SNT locates a local minima at lag 60, well before the zero crossing. I then 
reconstruct the system using time delays at increments of 30 lags: r=l, 30, 60, 90, 120 
and 150. The dimension estimates for an embedding dimension of m=4 are reported in 
Table 1 and graphed in Fig. 7, along with a smoothed curve fit to those points.6 At lag 60, 
I estimate a correlation dimension of v=2.461. As with the Lorenz attractor, the 
dimension estimates are a concave function in the delay time with an inflection point just 
a little beyond the local minima of the SNT. 

To substantiate a claim for nonlinear structure, I calculated correlation dimensions for a 
series of uniform random deviates on [O,l]. These are graphed in Fig. 7 as well. Using the 
standard errors in Table 1, I can easily reject that the dimension estimates for the 
exchange rate data equal to those for the random deviates. More important though, the 
estimates from the random data show no dependence on delay time. 

‘For more details on the ERM and an application of nonlinear modeling to the FF/DM exchange rate, see 

Mizrach (1995b). 

6Normally. one would proceed to higher and higher embedding dimensions and see whether the correlation 

dimension plateaus. Data limitations prevent me from using m greater than 4. 
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Fig. 7. Correlation dimension estimates for FF/DM exchange rate. 

7. Conclusions 

An unresolved question in the literature on dimension estimation has been the method 
of choosing a delay time for reconstruction. This paper proposed the use of a measure of 
nonlinear correlation which I call the simple nonparametric test @NT). In dimension 
estimation of the Lorenz attractor, the SNT proved to be a more reliable indicator of delay 
time than a common rule of thumb, the first zero crossing of the autocorrelation function. 

The utility of this procedure for economists was demonstrated in an application to the 
FF/DM exchange rate. I find nonlinear structure in this banded exchange rate using time- 
delayed data in the reconstruction. 
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